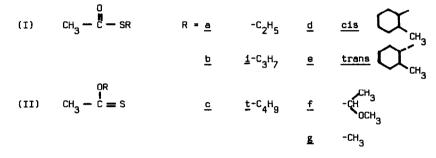
!


THERMOLYSIS OF ALKYL THIOL- AND THIONOACETATES X

P.C. Oele, A. Tinkelenberg XX and R.Louw

Gorlaeus Laboratoria, The University, P.O.Box 75, Leiden, The Netherlands

(Received in UK 18 April 1972; accepted for publication 3 May 1972)

Whereas β -elimination from alkyl acetates ¹ and xanthates ² is well characterized, that of the title compounds has, to our knowledge, not been investigated before. We have now thermolized (Ia-c) ^{3,4}, the formation of olefins appears as a clean first-order process, insensitive

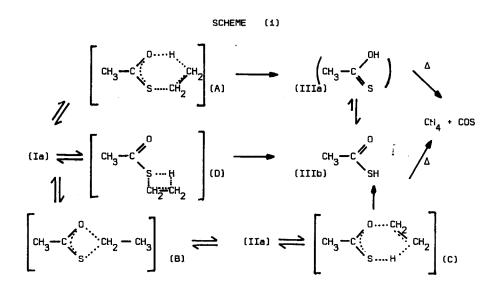
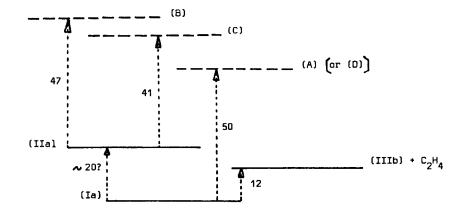

to wall effects (20 - fold increase in surface - to - volume ratio). The <u>cis</u> - character is shown by the products from (Id)(forming only 3-methylcyclohexene) and from (Ie), giving also 1-methylcyclohexene. The Arrhenius parameters (Table) show that eliminations from (Ia-c) are somewhat slower than those from the corresponding acetates. Thermolysis of thiolesters, however offers an attractive way of eliminating the components of H_2S from thiols: (RSH \rightarrow (I) $\stackrel{\Delta}{\rightarrow}$ alkene(s)), the direct reaction (RSH $\stackrel{\Delta}{\rightarrow}$ alkene(s)) having a much higher activation energy 5 .

TABLE Arrhenius parameters for acetate and thiolacetate thermolysis

CH3 CKXR					
	x = 0 ⁶		X = S		
R	log A	Ea	log A	Ea	temp.region (⁰ C)
^С 2 ^Н 5	12.6	48.2	12.4	50.4	490 - 568
1 - C3H7	12.9	44.7	13.2	49.2	450 - 526
t C ₄ H ₉	13.1	40.0	13.8	45.7	380 - 432

x Thermolytic Reactions of Esters. VII; part VI, cf. 1

xx Present address: DSM, Central Laboratory, P.O.Box 18. Geleen, The Netherlands


By analogy an (A) like six-centre transition state (cf. Scheme (i), outlined for $R = C_2H_5$) suggests itself. This, however, would lead to - energetically unfavourable - (IIIa) rather than (IIIb).

Both the acid (III) formed from (I) and <u>authentic</u> (IIIb) are found to decompose to a large extent under the prevailing conditions (cf. Table), giving CH_4 + COS together with small amounts of H_2S and ketene.

When (If) is thermolyzed (310 - 360 °, log k = 13.0 - 39.6 (θ)⁷, (III) - once formed remains largely in tact. Now the decomposition occurs ca. 3 times faster than that of authentic (IIIb). Presumably, (IIIa), when formed as intermediate, gives CH₄ + COS directly in competition with equilibration (IIIa) \rightleftharpoons (IIIb) ⁹. We therefore consider route (Ia) \rightarrow (D) \rightarrow (IIIb), involving a four-centre transition state, less likely than that via (A).

Another alternative route may be considered, viz. <u>isomerization</u> (I) \rightarrow (B) \rightarrow (II) prior to elimination via (C). In our hands, authentic (IIa) and (IIg) isomerize with comparable rates to give (Ia) and (Ig), the latter reaction having log k \sim 13.3 - 46.5/0¹⁰. The predominant reaction of (IIa), however, is elimination (IIa) \rightarrow (III), log k = 12.5 - 41.2/0. It is therefore concluded — cf. the energy diagram of Scheme (ii) — that (II) is <u>not</u> an intermediate in pyrolytic alkene formation from thiol esters (I).

NOTES and REFERENCES

- A.Tinkelenberg, E.C.Kooyman and R.Louw, Rec.Trav.Chim. <u>91</u>, 3 (1972) and references cited there.
- 2. G.L.O'Connor and H.R.Nace, J.Am.Chem.Soc. 74, 5454 (1952).
- More detailed information also on other substituted thiolacetates will be given in a forthcoming paper and in: P.C.Dele, Thesis, Leiden (1972).
- 4. We used a micro-flowreactor/g.l.c. combination as described by A.Tinkelenberg, J. of Chromatographic Science, <u>8</u>, 721 (1970); helium served as the carrier gas and cyclohexane, toluene or m-xylene as diluents.
- S.W.Benson and H.E.O'Neil, "Kinetic Data on Gas Phase Unimolecular Reactions", NSRDS - NBS 21 (1970).
- H.E.O'Neil and S.W.Benson, J.Phys.Chem. <u>71</u>, 2903 (1967).
- 7. As with chlorides 8 and acetates 3 , α -OCH $_3$ enormously enhances the rate of elimination.
- 8. R.I.Failes and V.R. Stimson, Austr. J.Chem. 20, 1553 (1967).
- Proton transfer (tautomerization) is not necessarily a rapid reaction in the vapour-phase;
 cf. R.Louw, Rec.Trav.Chim. 90, 1119 (1971).
- 10. This type of reaction very probably via a transition state like (B) has hitherto only been described for <u>aryl</u> esters ¹¹; the isomerization of <u>allylic</u> thionoacetates involves a six-centre type transition state ¹².

- a) H.Kwart and R.Evans, J.Org.Chem. <u>31</u>, 410 (1966),
 b) K.Miyazaki, Tetrah. Letters, 2793 (1968).
- 12. S.G.Smith, J.Am.Chem.Soc. <u>83</u>, 4285 (1961).